

Performance of a Freezing Point Depressant System in Appendix O Environment

OVERVIEW

- Background
- Freezing Point Depressant (FPD) Panel Design
- Predictive Analysis
- Performance in Appendix O
- Certification Considerations
- Possible Certification Ice Shapes
- Icing Wind Tunnel Tests
- Conclusions and Future Work

Background

- CAV currently designs FPD systems to perform as an anti-ice system in continuous maximum clouds and a de-ice system during intermittent maximum encounters.
- Using guidance from AC23-1419-2D, current tank is sized based on flow required for operating in the continuous maximum environment.
- Rule making currently in progress to determine certification requirements for Part 23 in freezing drizzle and freezing rain (Appendix O).
- Goal of exercise is to determine performance of FPD system in appendix O and how it may effect future system designs.

- Define aircraft geometry and performance parameters
 - For this analysis a generic wing panel and tail panel was defined
 - Similar geometry and performance parameters to recent programs
 - Wing represented by NASA NLF airfoil (NASA LS(1)0417-MOD)
 - Cruise AOA of -2.2
 - Climb AOA of 2.2
 - 1.0m at tip of panel, 1.25m at root of panel
 - Tail represented by NACA 0012 airfoil
 - Cruise AOA of -2.0
 - Climb AOA of 0.0
 - 0.75m at tip of panel, 1.0m at root of panel
 - TAS of 110 m/s during cruise at 22,000ft
 - TAS of 75 m/s during climb at 22,000ft

FPD Panel Design

Define design point using Appendix C envelope and mass fraction curve of FPD fluid

- Study done on an airfoil were collection efficiency various over the surface and varies with droplet size
- Results verify the use of the design temperature and droplet size

Fluid Requirement for Generic Airfoil Across Continuous Maximum Envelope

Use FPD analysis tool and LEWICE output to define panel flow rate and size

FPD Panel Design

FPD Panel Design

Design Results

- Wing AOA -2.2 to 2.2
- Wing 1m at tip, 1.25m at root
- Tail AOA -2.0 to 0.0
- Tail 0.75m at tip, 1m at root

	Тір	Tip	Тір	Root	Root	Root	Panel flow
	sle	sle(-)	sle(+)	sle	sle(-)	sle(+)	rate
	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(ml/min/cm^2)
Wing	6.271	2.549	3.722	6.544	2.816	3.728	0.059
Tail	3.304	1.088	2.216	3.733	1.247	2.486	0.079

With defined panel FPD tool can be used to predict performance

Predictive Analysis

• 0.8 Minutes of Operation

- Evaluated using predictive analysis previously described.
- System designed for Appendix C performance evaluated in the Appendix O environment.
 - Freezing drizzle <40</p>
 - Freezing drizzle >40
 - Freezing rain < 40</p>
 - Freezing rain >40
- Performance evaluated in "High" and "Max" modes of operation.
 - Critical temperatures found for anti-ice operation for each mode in each environment
 - Performance evaluated in "Max" mode at coldest temperatures when anti-ice protection could not be achieved

Appendix O LWC Chart

				FD GT 40	FD LT 40	FR GT 40	FR LT 40
Ming		Cruise	High Crit	-7	-9	-6	-9
	Тір		Max Crit	-12	-18.5	-10	-13
		Climb	High Crit	-4	-6.5	-5	-7.5
			Max Crit	-8.5	-14.5	-9	-13
vvirig	Root	Cruise	High Crit	-6	-8	-5.5	-7.5
			Max Crit	-10	-15.5	-8.5	-13
		Climb	High Crit	-4	-6.5	-4	-6.5
			Max Crit	-7	-13	-7.5	-13
Tail	Tip	Cruise	High Crit	-9.5	-11	-8	-12.5
			Max Crit	-21.5	-25	-13	-13
		Climb	High Crit	-8	-10	-8.5	-13
			Max Crit	-20	-25	-13	N/A
	Root	Cruico	High Crit	-8	-9.5	-7	-10
		Ciuise	Max Crit	-15	-22.5	-12	-13
		Climb	High Crit	-7	-9.5	-7	-12
			Max Crit	-15.5	-25	-13	-13

- General observations on defining protection envelope
 - Root of the panel was more critical than the tip.
 - Wing airfoil was more critical than tail.
 - Climb more critical than cruise

- Possible operational procedures within Appendix O environment
 - Detect and exit
 - Certify for continued operation over a portion of the environment and detect and exit over remaining portion
 - Certify for continued operation within entire envelope

System design considerations

- Increase panel size to fully protect in Appendix O
- Tank size for various types of operation
 - Increasing panel size increases overall flow rate and therefore, size of tank needed.
 - Operating in Appendix O environment requires higher flow rate.

- Performed analysis to determine panel size increase to provide anti-ice solution in appendix O using Max mode
 - Freezing drizzle greater than 40 at -25C is critical case
 - Results indicate overall wing design flow rate increases 3.3x+ from the Appendix C design
 - Results indicate overall tail design flow rate increases 2.3x + from the Appendix C design

	Tip sle App. C (cm)	Tip sle App. O (cm)	Tip % Change	Root sle App. C (cm)	Root sle App. O (cm)	Root % Change
Wing	6.271	9.822	56.6%	6.544	11.844	81.0%
Tail	3.304	3.540	7.1%	3.733	4.832	29.4%

Possible Certification Ice Shapes

NACA 0012 at 110 m/s TAS at an AOA of -2.0 with a chord of 70 cm.

15 minute Freezing Drizzle> 40 Microns -25 Deg C

Wing at 110 m/s TAS at an AOA of -2.2 with a chord of 125 cm. Max thickness of ~0.25"

45 minute Freezing Drizzle> 40 Microns -25 Deg C

Possible Certification Ice Shapes

15 minute Freezing Drizzle> 40 Microns -25 Deg C

Wing at 75 m/s TAS at an AOA of 2.2 with a chord of 125 cm. Max thickness of ~0.13"

Possible Certification Ice Shapes

45 minute Freezing Drizzle> 40 Microns -25 Deg C

Wing at 75 m/s TAS at an AOA of 2.2 with a chord of 125 cm. Max thickness of ~0.5"

- During November of 2010 some preliminary IWT tests were performed by CAV at the Cox LeClerc IWT facility.
- Testing was done on a model representative of the generic airfoil the analysis was performed on.
- Tunnel only capable of producing a cloud of limited size in the middle of tunnel
- Tunnel was limited to freezing drizzle > 40 microns.
 - Previously measured tunnel conditions were 98 microns with an LWC of 0.793 g/m³ @ 170 mph.
 - 7 bin, Langmuir-D distribution used to simulate tunnel spray for analysis purposes

- Analytical comparisons were made between a Langmuir-D distribution and the appendix O defined distribution
- Tunnel calibration was done at 170 mph, while analysis was done at 246 mph (110 m/s).
- Tunnel speed was scaled for dynamic pressure to 201 mph.
- Therefore, for analytical purposes, LWC was assumed to change linearly with speed
 - Tunnel LWC @ 201 mph assumed to be 0.671 g/m^3 with a droplet size of 98 microns
 - Desired LWC ranged from 0.19 to 0.262 g/m^3
 - TKS fluid flow for each condition is scaled to match ratio of expected tunnel LWC to desired LWC

Run #	System Setting	Temperature (°C)	Desired LWC (g/m^3)	Estimated Tunnel LWC (g/m^3)	Actual Intercept Time (min)	Scaled Intercept Time (min)	Description of Expected Performance
62	High	-7.0	0.262	0.671	Approx 19	Approx 49	Anti-ice on lower surface, small area of de-ice performance on upper surface
63	Max	-7.0	0.262	0.671	Approx 9	Approx 23	Anti-ice on entire airfoil
64	Max	-12.0	0.242	0.671	Approx 12.5	Approx 35	Anti-ice on lower surface, small area of de-ice performance on upper surface
65	Max	-25.0	0.190	0.671	Approx 15	Approx 53	Anti-ice on lower surface, limited protection on upper surface

Comparison of a 7 Bin Langmuir-D Distribution for 98 Microns and Defined Appendix O Distribution for Freezing Drizzle > 40

- Full shed 11 minutes into run
- Ice extends to ~20% chord (ice was ~7" wide along chord)
- No ice observed on lower surface
- More ice seen than expected from analysis
- Run stopped at 19 min to try and contain "largest" ice shape prior to 2nd shed cycle for measurement

Estimated x/c	Ice Thickness (in)		
0.035 (End of panel)	0.06		
0.077	0.222		
0.12	0.325		
0.16	0.328		
0.20	0.371		

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

0

- Fully shed at 3.75 and 8.75 min into run
- Ice shape estimated as no worse than standard roughness used for delayed start
- No ice observed on lower surface
- Anti-ice performance expected, but de-ice observed
- Run stopped after 2 shed cycles as results were viewed as repeatable

- Partial sheds constantly throughout run
- Ice extends to ~40% chord
- Thickest point of shape estimated at ~0.75in
- No ice observed on lower surface
- More ice seen than expected from analysis
- Run stopped at 12 min to try and contain "largest" ice shape for measurement, but ice detached from model during shutdown

15 Min

- System was demonstrated to have the ability to de-ice during less severe encounters and had limited protection at critical condition (run 65)
- Verbally informed by tunnel personal that actual provided LWC could be as much as 1.5 times the expected LWC
- Effects of 2.5 3 x scaling on the ability to accurately predict performance is unknown
- The ice shape developed during run 65 was similar to predicted shape in size and location (see slide 28)
 - Extents and maximum thickness similar
 - Front of actual shapes were more sloped than predicted shapes
- Further icing tunnel testing in better defined conditions closer to defined appendix O environment is highly desired to study the performance of TKS and accuracy of analytical tools in the appendix O environment

- FDP system provides anti-ice protection over portions of the Appendix O envelope with current design process.
- Certification for either detect and exit or continuous operation will likely require some type of ice shape or changes to panel design.
- As capabilities of icing tunnels expand, continued work to investigate extents of protection is desired to verify analytical results.

