

International Conference on Icing of Aircraft, Engines, and Structures June 20-22, 2023 Vienna, Austria

A Fluid-Based Ice Protection System for sUAS Propellers

R. Brock Harden CAV Systems, Ltd.

Introduction

Presentation Outline

- <u>The "Why"</u>: Importance of Ice Protection for sUAS
- <u>System Overview</u>: Pneumatic-Fluid Ice Protection System
- <u>Components Discussion</u>: Key Parts and Functionality
- <u>Wind Tunnel Testing</u>: Results and Insights
- <u>Flight Testing</u>: Dry-Air Tests
- <u>Conclusions and Future Directions</u>: Summary and Next Steps

Introduction

- The sUAS industry is growing rapidly across many different use cases.
 - Consumer goods delivery
 - Medical supplies
 - Emergency response
 - Research
- In-flight protection from ice protects the aircraft, people, and property, and improves the efficiency of the systems that rely on sUAS.
- Tech presented in this presentation is subject of UK patent application No. GB 2218766.0

The Small Propeller Icing Problem

- sUAS propeller blades are sharp, small, and fast.
- Leads to...
 - Very high water catch efficiency (~90%)
 - Large impingement limits (sometimes to the trailing edge!)
- Testing shows extremely dangerous thrust loss within 2 to 3 minutes.

The Small UAS Icing Problem

- Energy and weight are paramount for sUAS.
- For a 16 kg all-up weight, every 0.5 kg increase in auxiliary system weight is nearly a 6% decrease in payload capacity.
- Electro-thermal IPS uses large amounts of power, forcing an increase in battery size.
- Other technologies are difficult to scale down.
 - Bleed air, pneumatic boots
- While others have not been shown to be effective and durable.
 - Passive surface coatings
- Fluid systems require that fluid is carried but are very low energy and can protect the propeller blades and the airframe.

The Pneumatic-Fluid Ice Protection System Overview

Prototype Weight

TKS Components

- TKS Tank
- Static Regulator
- Solenoid
- TKS Controller
- Propeller Protection

Prototype Weight

Fluid Tank

- 1 liter of TKS = 30 minutes of icing endurance in freezing fog.
- Pressure vessel and fluid container in one.

Static Regulator

- Pressurized CO₂ is used for fluid motivation.
- The static regulator provides a constant pressure to the tank.
- Zero electrical energy required to move fluid.

Solenoid

• A low-power solenoid turns off and on to modulate the flow to the arterial tubing.

HHHH

• < 10 W power usage</p>

Propeller Protection

 Fluid from the arterial system is fed into a nozzle, filling a channel in a slinger ring.

Propeller Protection

 Centrifugal force pushes the fluid through the feed tubes into porous cuffs at the root of the blade.

Propeller Protection

 Fluid emerges from the porous surface, coating the upper and lower surface of the blade in TKS fluid.

Wind Tunnel Testing

- Icing wind tunnel tests performed at the LeClerc Icing Research Lab (Cox & Co.)
- Performed 40 runs on different cuffs at various freezing fog and flight conditions.
- Collected data using a DAQ thrust stand.
 - Torque, thrust, vibration, electrical current

Test Conditions

Freezing Fog Conditions [1] LWC Temperature D Case Ν -4 °C 0.03 g m-3 50 cm-3 16 µm 2 -8 °C 0.03 g m-3 50 cm-3 16 µm 3 -12 °C 0.03 g m-3 50 cm-3 16 µm 4 -4 °C 0.3 g m-3 100 cm-3 26 µm 5 -8 °C 0.3 g m-3 100 cm-3 26 µm Deck Angle 6 -12 °C 0.3 g m-3 100 cm-3 26 µm 7 -4 °C 0.3 g m-3 300 cm-3 16 µm -8 °C 0.3 g m-3 300 cm-3 16 µm 8 9 -12 °C 0.3 g m-3 300 cm-3 16 µm Airflow **Propeller Disk**

Flight Conditions

Case	Flight Mode	Deck Angle	RPM
1	Hover	90°	60%
2	Cruise	18°	75%
3	Climb	90°	100%

[1] Developed in coordination with the University of North Dakota, Department of Atmospheric Sciences

Predictive Analysis

• Flowrate per propeller (two blades)

Assumes max beta across impingement range.

Case	Temperature (°C)	LWC (g/m^3)	D (um)	Hover (ml/min) Cruise (ml/min)		Vert Climb (ml/min)
1	1 -4 0.03 1		16	0.06	0.06 0.05	
2	-8	0.03	16	0.19	0.19	0.20
3	-12	0.03	16	0.32	0.37	0.37
4	-4	0.3	26	0.72	0.58	0.58
5	-8	0.3	26	2.15	2.08	2.10
6	-12	0.3	26	3.50	3.96	3.98
7	-4	0.3	16	0.61	0.54	0.54
8	-8	0.3	16	1.94	1.94	1.96
9	-12	0.3	16	3.18	3.71	3.74

©CAV Systems Limited 2023

Predictive Analysis

Maximum	Beta

Normalized Beta

Case	Temperature (°C)	LWC (g/m^3)	D (um)	Hover (ml/min)	Cruise (ml/min)	Vert Climb (ml/min)	Hover (ml/min)	Max Forward (ml/min)	Max Climb (ml/min)
1	-4	0.03	16	0.06	0.05	0.05	0.01	0.01	0.01
2	-8	0.03	16	0.19	0.19	0.20	0.04	0.03	0.03
3	-12	0.03	16	0.32	0.37	0.37	0.06	0.06	0.06
4	-4	0.3	26	0.72	0.58	0.58	0.12	0.09	0.09
5	-8	0.3	26	2.15	2.08	2.10	0.35	0.33	0.34
6	-12	0.3	26	3.50	3.96	3.98	0.57	0.63	0.64
7	-4	0.3	16	0.61	0.54	0.54	0.13	0.08	0.08
8	-8	0.3	16	1.94	1.94	1.96	0.36	0.29	0.29
9	-12	0.3	16	3.18	3.71	3.74	0.58	0.56	0.57

Thrust Loss

- For an unprotected blade, thrust performance degrades linearly and rapidly.
 - An analysis suggests that at this condition, an sUAS at 400 ft AGL would crash into the ground within 2.4 minutes.
- The protected blades show a bounded 10-15% decrease in thrust. Enough to degrade performance but still capable of maintaining safe flight to exit icing.

Power Draw

- Similarly, a large increase in power is required due to increased drag.
- For this icing condition...
 - Unprotected: ~ 115 % increase in power draw
 - Protected: ~ 20 % increase

Temperature Effects

 For a given LWC (0.3 g/m³) and droplet size (26 um), performance of the protected system decreased with temperature.

Temperature Effects

• Similarly, at the same condition, power draw increased.

Flow Rate Change

- During testing, the flow rate was changed to monitor the effects for a few runs.
- Neither increased or decreased flow had a marked effect on performance.
- This suggests that the ability of TKS to prevent ice from adhering to the blade surface may be enhanced by the extreme environment of a propeller blade: high Gforces and vibration.
- Analysis and tests indicate a possibility to decrease fluid requirements, drastically decreasing system weight.

Comparisons

• • •

Comparisons

Ice Shape Models

Dry-Air Flight Testing

©CAV Systems Limited 2023

• • •

Conclusion And Future Directions

- A method of protecting sUAS blades with TKS was demonstrated in an icing wind tunnel for freezing fog conditions.
- Built on the blade protection methodology, a low-power pneumatic-fluid system was designed.
- Dry air flight tests showed negligible impacts to aircraft endurance with TKS hardware on and running.
- Natural icing flight tests are expected to take place next US winter season.
- Implement planned changes and optimizations to decrease system weight.
- Additional IWT testing to refine fluid consumption and verify system miniaturization.
- As discussed, this is a rapid-growth sector, and collaboration is key. CAV is interested and open to working with operators, manufacturers, regulators, et al!
- Reminder: Tech presented in this presentation is subject of UK patent application No. GB 2218766.0

Contact Information

R Brock Harden, Senior Engineer – Design CAV Systems

Tel: +1 (913) 738 5398

Email: r.harden@cav-systems.com

UK +44 (0) 1207 599 140 US +1 (913) 738 5390

TKS@cav-systems.com

Registered Offices:

Number One Industrial Estate, Consett, United Kingdom, DH8 6SR
30 Leawood Drive, New Century, Kansas, 66301, USA